
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 24 October 2022
Markus Püschel, David Steurer
François Hublet, Goran Zuzic, Tommaso d’Orsi, Jingqiu Ding

Algorithms & Data Structures Exercise sheet 5 HS 22

�e solutions for this sheet are submi�ed at the beginning of the exercise class on 31 October 2022.

Exercises that are marked by ∗ are “challenge exercises”. �ey do not count towards bonus points.

You can use results from previous parts without solving those parts.

Exercise 5.1 Heapsort (1 point).

Given the array [0, 7, 2, 8, 4, 6, 3, 1], we want to sort it in ascending order using Heapsort.

(a) Draw the tree interpretation of the array as a heap, before any call of RestoreHeapCondition.

Solution:

0

7

8

1

4

2

6 3

(b) In the lecture you have learned a method to construct a heap from an unsorted array (see also pages
35–36 in the script). Draw the resulting max heap if this method is applied to the above array.

Solution:

We start from the heap drawn above. �e root of the heap is at level 0. Heapifying the subtree with
root at level 2 leaves the heap unchanged.

�en, heapifying the subtrees with roots at level 1 yields:

0

8

7

1

4

6

2 3

Finally, heapifying the subtree at the root node yields

8

7

1

0

4

6

2 3

which corresponds to the array [8, 7, 6, 1, 4, 2, 3, 0].

(c) Sort the above array in ascending order with heapsort, beginning with the heap that you obtained
in (b). Draw the array a�er each intermediate step in which a key is moved to its �nal position.

Solution:

We begin with the max heap [8, 7, 6, 1, 4, 2, 3, 0]. We extract the root 8 and put it into the last
position in the array, i.e., we swap 8 with the last element 0, removing 8 from the heap, which
yields

0

7

1 4

6

2 3

We then si� 0 downwards until the heap condition is restored:

2

7

4

1 0

6

2 3

Now, the array is [7, 4, 6, 10, 2, 3, 8] and contains the one-smaller heap in the front and the sorted
entries in the end.

�e array a�er the subsequent steps are as follows. Blue numbers are at their �nal positions.

1) Swap 7 and 3: [3, 4, 6, 1, 0, 2, 7, 8]
Si� 3 down: [6, 4, 3, 1, 0, 2, 7, 8]

2) Swap 6 and 2: [2, 4, 3, 1, 0, 6, 7, 8]
Si� 2 down: [4, 2, 3, 1, 0, 6, 7, 8]

3) Swap 4 and 0: [0, 2, 3, 1, 4, 6, 7, 8]
Si� 0 down: [3, 2, 0, 1, 4, 6, 7, 8]

4) Swap 3 and 1: [1, 2, 0, 3, 4, 6, 7, 8]
Si� 1 down: [2, 1, 0, 3, 4, 6, 7, 8]

5) Swap 2 and 0: [0, 1, 2, 3, 4, 6, 7, 8]
Si� 0 down: [1, 0, 2, 3, 4, 6, 7, 8]

6) Swap 0 and 1: [0, 1, 2, 3, 4, 6, 7, 8]
done: [0, 1, 2, 3, 4, 6, 7, 8].

We are done.

Exercise 5.2 Sorting algorithms.

Below you see four sequences of snapshots, each obtained in consecutive steps of the execution of
one of the following algorithms: InsertionSort, SelectionSort, QuickSort, MergeSort, and
BubbleSort. For each sequence, write down the corresponding algorithm.

3 6 5 1 2 4 8 7
3 6 5 1 2 4 8 7
3 5 6 1 2 4 8 7

3 6 5 1 2 4 8 7
3 5 1 2 4 6 7 8
3 1 2 4 5 6 7 8

3 6 5 1 2 4 8 7
3 6 1 5 2 4 7 8
1 3 5 6 2 4 7 8

3 6 5 1 2 4 8 7
1 6 5 3 2 4 8 7
1 2 5 3 6 4 8 7

Solution:

InsertionSort – BubbleSort – MergeSort – SelectionSort.

3

Exercise 5.3 Counting function calls in recursive functions (1 point).

For each of the following functions g, h, and k, provide an asymptotic bound in big-O notation on the
number of calls to f as a function of n. You can assume that n is a power of two.

Algorithm 1
(a) function g(n)

i← 1
while i < n do

f()
i← i+ 2

g(n/2)
g(n/2)
g(n/2)

Solution:

Denoting by G(n) the number of calls to f performed by g(n), we have

G(n) = 3G(n/2) + bn/2c ≤ 3 ·G(n/2) +
1

2
· n1.

Since log2 3 > 1, the Master theorem yields G(n) ≤ O(nlog2 3) = O(n1.58...).

Algorithm 2
(b) function h(n)

i← 1
while i < n do

f()
i← i+ 1

k(n)
k(n)

function k(n)
i← 2
while i < n do

f()
i← i2

h(n/2)

Solution:

First, consider the number of calls to f performed in a call of k(n). Variable i takes the values
2, 22, 24, 28..., i.e., (22j)1≤j . We leave the while loop when 22

j ≥ n, i.e., when 2j ≥ log2 n or
j ≥ log2 log2 n. Hence, the number of iterations is dlog2 log2(n)e.

Denoting by H(n) and K(n) respectively the number of calls to f performed by h(n) and k(n),
we have

H(n) = 2K(n) + n− 1

K(n) = H(n/2) + dlog2 log2(n− 1)e+ 1

4

Injecting the de�nition of K(n) into the de�nition of H , we get

H(n) ≤ 2H(n/2) + 2 log2 log2 n+ n ≤ 2 ·H(n/2) + 3 · n1

and since log2 2 = 1, the Master theorem yields H(n) ≤ O(nlog2 2 · log n) = O(n log n). Since
K(n) ≤ H(n/2) + O(log log n), we immediately obtain K(n) ≤ O(n log n) + O(log log n) =
O(n log n) too.

Exercise 5.4 Bubble sort invariant.

Consider the pseudocode of the bubble sort algorithm on an integer array A[1, . . . , n]:

Algorithm 3 BubbleSort(A)

for 1 ≤ i ≤ n do
for 1 ≤ j ≤ n− i do

if A[j] > A[j + 1] then
t← A[j]
A[j]← A[j + 1]
A[j + 1]← t

return A

(a) Formulate an invariant INV(i) that holds at the end of the i-th iteration of the outer for-loop.

Solution:

A�er i iterations of the outer for-loop, the subarray A[n− i+1, . . . , n] is sorted and each element
from A[1, . . . , n− i] is not greater than each element from A[n− i+ 1, . . . , n].

(b) Using the invariant from part (a), prove the correctness of the algorithm. Speci�cally, prove the
following three assertions:

(1) INV(1) holds.

(2) If INV(i) holds, then INV(i+ 1) holds (for all 1 ≤ i < n).

(3) INV(n) implies that BubbleSort(A) correctly sorts the array A.

Solution:

(1) INV(1) means that a�er the �rst iteration of the outer for-loop, the largest element of A is at
position n. Suppose that this largest element was originally at position j for some 1 ≤ j ≤ n.
If j = n, the element will never be swapped by the �rst inner for-loop, and hence is still at
position n at the end, as desired. For j < n, this largest element will be swapped to position
j + 1 in the j-th iteration of the inner for-loop, and then swapped to position j + 2 in the next
iteration, and so on until it is swapped to position n. So in both cases it is at position n at the
end of the �rst for-loop.

(2) Let 1 ≤ i < n. Assuming that INV(i) holds, we know that before the (i + 1)st iteration of
the outer for-loop, the i last entries of the array are the i largest entries of the input array A
sorted in ascending order. Using a similar reasoning as in (i), we see that during the (i + 1)st
iteration, the largest element among the remaining part of the array (namely A[1, . . . , n − i])
will be placed at the last position of this remaining part, so that now the the i+1 last entries of
the array are the i+1 largest entries of the input array in ascending order. �erefore, INV(i+1)
holds.

5

(3) INV(n) means that the “subarray” A[1, . . . , n] is sorted. But this is actually the full array (since
A has length n) returned by BubbleSort(A), which shows that the algorithm correctly sorts
the array A.

Exercise 5.5 Guessing a pair of numbers (1 point).

Alice and Bob play the following game:

• Alice selects two integers 1 ≤ a, b ≤ 1000, which she keeps secret

• �en, Alice and Bob repeat the following:

– Bob chooses two integers (a′, b′)

– If a = a′ and b = b′, Bob wins

– If a > a′ and b > b′, Alice tells Bob ‘high!’

– If a < a′ and b < b′, Alice tells Bob ‘low!’

– Otherwise, Alice does not give any clue to Bob

Bob claims that he has a strategy to win this game in 12 a�empts at most.

Prove that such a strategy cannot exist.

Hint: Represent Bob’s strategy as a decision tree. Each edge of the decision tree corresponds to one of Alice’s
answers, while each leaf corresponds to a win for Bob.

Hint: A�er de�ning the decision tree, you can consider the sequence k0 = 1, kn+1 = 3kn + 1, and prove
that kn = 3n+1−1

2 . �e number of leaves in the decision tree of level n should be related kn.

Solution:

Bob’s strategy can be represented as follows, where green arrows correspond to a win, red arrows to
‘high!’, blue arrows to ’low!’, and black arrows to the absence of a clue.

.

.

Each node of the corresponding tree has four children, of which one (corresponding to Bob winning
the game) has no other child, while the three others can have four children with the same structure as
their parent. Denoting by kn the number of leaves in a tree of level n + 1 of the above form, we see
that {

k0 = 1

kn+1 = 3kn + 1 ∀n > 0.

We will now prove by induction that, for all n > 0, we have: P (n): kn = 3n+1−1
2 .

Base case: n = 0 k0 = 1 = 30+1−1
2 , hence P (0).

6

Inductive step: Let n > 0. Assume P (n). �en we have kn+1 = 3kn + 1
P (n)
= 3 · 3n+1−1

2 + 1 =
3n+2−3

2 + 1 = 3n+2−3+2
2 = 3n+2−1

2 , hence P (n+ 1).

In order for Bob’s strategy to allow him to win for any pair of integers chosen by Alice, the tree repre-
senting his strategy must have at least 1000 ·1000 = 106 leaves, which is the number of pairs (a, b) that
Alice can choose. If Bob’s statement is true, we therefore have k11 ≥ 106. Now, k11 = 312−1

2 < 106,
hence Bob cannot win in at most 12 a�empts.

7

